NF-κB インヒビターおよびアクチベーター

NF-κB シグナル伝達を阻害、あるいは活性化する化合物をまとめました。


NF-κB のシグナル伝達(パスウェイ)とその制御にはさまざまなタンパク質が関与しており、それらタンパク質それぞれに、阻害もしくは活性化する低分子化合物(生理活性物質)が知られています。このような化合物を以下の表にまとめました。



分類

低分子化合物

活性

IC50

参考文献

IKK 複合体阻害

TPCA 1

IκB の分解と IL-8 の発現をブロックする IKK 阻害剤

400 nM (IKKα)、17.9 nM (IKKβ)

1,2

NF-κB Activation Inhibitor VI (BOT-64)

IKKβ 阻害剤で、NOS、COX-2、IL-1β、IL-6 などの発現を抑制する

1 μM (RAW 264.7 細胞)

3

BMS 345541

高選択性 IKKα 阻害剤

4 μM (IKKα)、 0.3 µM(IKKβ)

4

Amlexanox

臨床でも使用される IKKε および TBK-1 阻害剤

1-2 μM(IKKε)

5

SC-514(GK 01140)

可逆的な、ATP 競合 IKKβ 選択的阻害剤

10.2 μM

6,7

IMD 0354

強力な IKKβ 選択的阻害剤

250 nM

8

IKK-16

強力な IKK 選択的阻害剤で、NOS の発現を抑制する

25 nM

9,10

IκB 分解阻害

BAY 11-7082

IκB へのユビキチン付加を阻害する

10 μM

11,12

MG-115

強力で可逆的なプロテアソーム阻害剤であり、RANKL シグナリングを妨害する

97.5 nM

13,14

MG-132

22.4 nM

14

Lactacystin

強力な不可逆的 20S プロテアソーム阻害剤

0.2-2.8 μM

15

Epoxomicin

6.8 nM

14

Parthenolide

IκBα 分解と IKK 複合体の活性を阻害する

30 μM

12

Carfilzomib

強力な不可逆的 26S プロテアソーム阻害剤

8.32-16.55 nM

16

MLN-4924

(Pevonedistat)

強力な Nedd-8(Ubiquitin-like protein)活性化酵素阻害剤

4.7 nM

17,18

NF-κB 核移行阻害

JSH-23

in vivo および LPS 処理した RAW264.7 細胞で、NF-κB の核移行を阻害する

-

19,20

Rolipram

LPS 処理した 絨毛膜細胞で、NF-κB の核移行を阻害する

-

21

p65 アセチル化阻害

Gallic acid

LPS 処理した A549 細胞で、p65 のアセチル化を阻害する

76 μM

22,34

Anacardic acid

4 µM TNF 処理した KBM-5 細胞で、p65 のアセチル化を阻害する

-

23

NF-κB-DNA 結合

GYY 4137

NF-κB が RANTES や IL-8 のプロモーターに結合するのを抑制する

-

24

p-XSC

p50-Cys62 に作用することにより、NF-κB の DNA への結合を阻害する

500 nM

25

CV 3988

p65 の DNA 結合を阻害する PAFR アンタゴニスト

-

26

Prostaglandin E2 (PGE2)

p50-p65 サブユニットの核輸送を阻害する

-

27

NF-κB 転写活性阻害

LY 294002

IL-1 刺激後のNF-κB による転写活性化をブロックする

-

28,29

Wortmannin

Mesalamine

p65 による転写活性化を阻害する

-

30

p53 誘導

Quinacrine

NF-κB とその下流の転写ターゲットを下方制御する

5 μM(RKO 細胞)

31,32

Flavopiridol

TNFα 誘導性の NF-κB 活性化を阻害する

1 μM (HT29 細胞)

33

NF-κB 活性化または誘導

Betulinic acid

NF-κB(p65)の核移行を促進し、転写活性を強める

-

35

Prostratin

カルシニューリンと相乗的に NF-κB の活性化を誘導する

-

36

PMA

NF-κB の DNA への結合を促す

-

37,38

Calcimycin (A23187) 

NF-κB のアクチベーターであり、Ca2+ イオノフォアでもある

-

39



抗酸化物質

PDTC40NAC41 のような抗酸化物質は、LPS、TNFα、過酸化水素などの刺激による NF-κB の活性化を阻害する能力があることが示されています。これら抗酸化物質は NF-κB パスウェイ中にある活性酸素中間体を補足することによって NF-κB を阻害すると思われます42


抗炎症剤と免疫抑制剤

広く利用されている非ステロイド性抗炎症薬(NSAID)であるサリチル酸ナトリウム(Sodium salicylate)は IKKβと結合し43、IκB のプロテアソームによる分解を阻害することが示されています44。また免疫調節機能があるグルココルチコイド系ステロイド、デキサメタゾン(Dexamethasone; DEX)は、NF-κB の活性化を阻害し、TNFα の産生を抑制することが知られています45,46

免疫抑制の研究から、免疫抑制剤として市販されているシクロスポリン A(Cyclosporin A; CsA)は、NF-κB /RelA の活性化を阻害し、IL-2 と IL-8 の発現を抑制することが示されています47,48。また、市販されている別の免疫抑制剤である FK506(Tacrolimus; タクロリムス)は、p50 の核移行をブロックすることにより、下流にある IL-2 などの炎症性サイトカイン遺伝子の転写活性化を抑制することが示されています49


参考文献

1. Rauert-Wunderlich, H. et al. The IKK Inhibitor Bay 11-7082 Induces Cell Death Independent from Inhibition of Activation of NFκB Transcription Factors. PLoS One 8, (2013).

2. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

3. Kim, B. H. et al. Benzoxathiole derivative blocks lipopolysaccharide-induced nuclear factor-kappaB activation and nuclear factor-kappaB-regulated gene transcription through inactivating inhibitory kappaB kinase beta. Mol. Pharmacol. 73, 1309–1318 (2008).

4. Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

5. Larsen, M. J. et al. The role of HTS in drug discovery at the University of Michigan. Comb. Chem. High Throughput Screen. 17, 210–30 (2014).

6. Kishore, N. et al. A selective IKK-2 inhibitor blocks NF-κB-dependent gene expression in interleukin-1β-stimulated synovial fibroblasts. J. Biol. Chem. 278, 32861–32871 (2003).

7. Oh, K.-S., Lee, S. & Lee, J. K. C. and B. H. Identification of Novel Scaffolds for IκB Kinase Beta Inhibitor via a High Throughput Screening TR-FRET Assay. Comb. Chem. High Throughput Screen. 13, 790–797 (2010).

8. Ogawa, H. et al. IκB kinase β inhibitor IMD-0354 suppresses airway remodelling in a Dermatophagoides pteronyssinus-sensitized mouse model of chronic asthma. Clin. Exp. Allergy 41, 104–115 (2011).

9. Coldewey, S. M., Rogazzo, M., Collino, M., Patel, N. S. A. & Thiemermann, C. Inhibition of IκB kinase reduces the multiple organ dysfunction caused by sepsis in the mouse. Dis. Model. Mech. 6, 1031–1042 (2013).

10. Waelchli, R. et al. Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorganic Med. Chem. Lett. 16, 108–112 (2006).

11. Strickson, S. et al. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem. J 451, 427–437 (2013).

12. Ghashghaeinia, M. et al. The NFκB pathway inhibitors bay 11-7082 and parthenolide induce programmed cell death in anucleated erythrocytes. Cell. Physiol. Biochem. 27, 45–54 (2011).

13. Katsuyama, K., Shichiri, M., Marumo, F. & Hirata, Y. NO inhibits cytokine-induced iNOS expression and NF-kappaB activation by interfering with phosphorylation and degradation of IkappaB-alpha. Arter. Thromb. Vasc. Biol. 18, 1796–1802 (1998).

14. Kreidenweiss, A., Kremsner, P. G. & Mordmüller, B. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar. J. 7, 187 (2008).

15. Vigneron, N., Abi Habib, J. & Van den Eynde, B. J. The capture proteasome assay (CAPA) to evaluate subtype-specific proteasome inhibitors. Data Br. 4, 146–51 (2015).

16. Crawford, L. J. et al. Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models. Oncogenesis 3, e90 (2014).

17. Godbersen, J. C. et al. The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-kappaB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin. Cancer Res. 20, 1576–1589 (2014).

18. Curtis, V. F. et al. Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J. 29, 208–215 (2015).

19. Kumar, A., Negi, G. & Sharma, S. S. JSH-23 targets nuclear factor-kappa B and reverses various deficits in experimental diabetic neuropathy: Effect on neuroinflammation and antioxidant defence. Diabetes, Obes. Metab. 13, 750–758 (2011).

20. Shin, H. M. et al. Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Lett. 571, 50–54 (2004).

21. Herve, R. et al. The PDE4 inhibitor rolipram prevents NF-kappa B binding activity and proinflammatory cytokine release in human chorionic cells. J. Immunol. (Baltimore, Md. : 1950) 181, 2196–2202 (2008).

22. Choi, K.-C. et al. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-κB signaling by preventing RelA acetylation in A549 lung cancer cells. Mol. Cancer Res. 7, 2011–2021 (2009).

23. Sung, B. et al. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB–regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhib. Blood 111, 4880 LP-4891 (2008).

24. Li, H. et al. Role of hydrogen sulfide in paramyxovirus infections. J. Virol. 89, 5557–68 (2015).

25. Chen, K. M. et al. Inhibition of nuclear factor-kappa B DNA binding by organoselenocyanates through covalent modification of the p50 subunit. Cancer Res. 67, 10475–10483 (2007).

26. Ogbozor, U. D., Opene, M., Renteria, L. S., McBride, S. & Ibe, B. O. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation. Mol. Genet. Metab. Reports 4, 11–18 (2015).

27. Gomez, P. F. et al. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-kappaB subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. J. Immunol. 175, 6924–6930 (2005).

28. Young, H. K., Choi, K. H., Park, J. W. & Taeg, K. K. LY294002 inhibits LPS-induced NO production through a inhibition of NF-κB activation: Independent mechanism of phosphatidylinositol 3-kinase. Immunol. Lett. 99, 45–50 (2005).

29. Manna, S. K. & Aggarwal, B. B. Wortmannin inhibits activation of nuclear transcription factors NF-kappaB and activated protein-1 induced by lipopolysaccharide and phorbol ester. FEBS Lett. 473, 113–118 (2000).

30. Bantel, H. et al. Mesalazine inhibits activation of transcription factor NF-kappa B in inflamed mucosa of patients with ulcerative colitis. Am. J. Gastroenterol. 95, 3452–7 (2000).

31. Gurova, K. V et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. U. S. A. 102, 17448–53 (2005).

32. Jani, T. S., DeVecchio, J., Mazumdar, T., Agyeman, A. & Houghton, J. a. Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J. Biol. Chem. 285, 19162–19172 (2010).

33. Takada, Y. & Aggarwal, B. B. Flavopiridol inhibits NF-κB activation induced by various carcinogens and inflammatory agents through inhibition of IκBα kinase and p65 phosphorylation. Abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J. Biol. Chem. 279, 4750–4759 (2004).

34. Morais, M. C. C. et al. Suppression of TNF-α induced NFκB activity by gallic acid and its semi-synthetic esters: possible role in cancer chemoprevention. Nat. Prod. Res. 24, 1758–65 (2010).

35. Kasperczyk, H. et al. Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy. Oncogene 24, 6945–56 (2005).

36. Chan, J. K., Bhattacharyya, D., Lassen, K. G., Ruelas, D. & Greene, W. C. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV. PLoS One 8, e77749 (2013).

37. Holden, N. S. et al. Phorbol ester-stimulated NF-kappaB-dependent transcription: roles for isoforms of novel protein kinase C. Cell. Signal. 20, 1338–1348 (2008).

38. Busuttil, V. et al. Blocking NF-kappaB activation in Jurkat leukemic T cells converts the survival agent and tumor promoter PMA into an apoptotic effector. Oncogene 21, 3213–3224 (2002).

39. Ggandison, L., Nolan, G. P. & Pfaff, D. W. Activation of the transcription factor NF-κB in GH3 pituitary cells. Mol. Cell. Endocrinol. 106, 9–15 (1994).

40. Schreck, R., Meier, B., Männel, D. N., Dröge, W. & Baeuerle, P. A. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175, 1181–94 (1992).

41. Oka, S., Kamata, H., Kamata, K., Yagisawa, H. & Hirata, H. N-acetylcysteine suppresses TNF-induced NF-kappaB activation through inhibition of IkappaB kinases. FEBS Lett. 472, 196–202 (2000).

42. Gupta, S., Sundaram, C., Reuter, S. & Aggarwal, B. Inhibiting NF-kB Activation by Small Molecules As a Therapeutic Strategy. Biochim. Biophys. Acta 1799, 775–787 (2011).

43. Kopp, E. & Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956–9 (1994).

44. Dikshit, P., Chatterjee, M., Goswami, A., Mishra, A. & Jana, N. R. Aspirin induces apoptosis through the inhibition of proteasome function. J. Biol. Chem. 281, 29228–29235 (2006).

45. Crinelli, R. et al. Selective inhibition of NF-kB activation and TNF-alpha production in macrophages by red blood cell-mediated delivery of dexamethasone. Blood Cells. Mol. Dis. 26, 211–222 (2000).

46. Chang, C. K., Llanes, S. & Schumer, W. Effect of dexamethasone on NF-kB activation, tumor necrosis factor formation, and glucose dyshomeostasis in septic rats. J. Surg. Res. 72, 141–145 (1997).

47. Nishiyama, S. et al. Cyclosporin A inhibits the early phase of NF-??B/RelA activation induced by CD28 costimulatory signaling to reduce the IL-2 expression in human peripheral T cells. Int. Immunopharmacol. 5, 699–710 (2005).

48. Meyer, S., Kohler, N. G. & Joly, A. Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-??B activation. FEBS Lett. 413, 354–358 (1997).

49. Venkataraman, L., Burakoff, S. J. & Sen, R. J. Fk506 inhibits antigen receptor-mediated induction of C-Rel in B-lymphoid and T-lymphoid cells. J. Exp. Med. 181, 1091–1099 (1995).

登録