All tags Proteins and Peptides ヒト ES 細胞から血球細胞への分化誘導

ヒト ES 細胞から血球細胞への分化誘導

用いるサイトカインと共培養フィーダー細胞

多能性幹細胞は適切なプロトコールを用いることで、造血幹細胞、さらには成熟血球細胞に、in vitro で分化させることができます。ここでは多様性幹細胞の一つであるヒト胚性幹細胞(ES 細胞)から、骨髄系またリンパ系の血球細胞に分化させるために必要なサイトカインと、共培養するフィーダー細胞の組み合わせをまとめました。


血球細胞

サイトカイン

共培養

参考文献

B 細胞

BMP4, VEGF, FGF1, bFGF, SCF, Flt3-L, TPO, GM-CSF, IL-2, IL-4, IL-15, G-CSF, IL-3, IL-6, IL-7

OP9

1

IL-7, IL-3, SCF, Flt3-L

OP9, MS5

2

樹状細胞

GM-CSF, IL-4, TNF-α


3

SCF, Flt3-L, GM-CSF, IL-3, TPO, IL-4, TNF-α


4

好酸球

IL-3, IL-5

OP9

3

赤血球

bFGF, VEGF, EPO, SCF, Flt3-L, IL-3, IL-6, G-CSF, TPO


5

SCF, IL-3, IL-6TPO, G-CSF, EPO

mFL stromal cells

6

EPO,  TPO, IL-3, IL-6,  Flt3-L,  SCF, Dex

OP9, MS5

7

顆粒球

IGF-II, VEGF, SCF, Flt3-L, TPO, G-CSF


8

BMP4, VEGF,  SCF,  TPO, Flt3-L, IL-3, G-CSF


9

IL-3, G-CSF or GM-CSF


10

マクロファージ

M-CSF, IL-1β


3

巨核球/血小板

BMP4,  VEGF,  bFGF,  SCF, TPO, IL-3


11

BMP4, VEGF, IL-3, Flt3-L, TPO, SCF, EPO

OP9

12

BMP4,  VEGF, bFGF, TPO, SCF, Flt3-L, IL-3, IL-6, IL-9


13

好中球

SCF, Flt-3 ligand, IL-6, IL-6 receptor, thrombopoietin, IL-3, G-CSF

OP9

14

G-CSF

OP9

3

NK 細胞

BMP4, bFGF, Activin A, VEGF, IGF-1, IL-6, IL-11, SCF, IL-3, EPO, TPO, IL-13, Flt3-L, IL-15

OP9-DL4

15

BMP4,  VEGF, SCF, IL-3, IL-6, TPO, EPO, IL-7, Flt3-L, IL-15

OP9-DL1

16

T 細胞

Flt-3 ligand, IL-7, SCF

OP9-DL1

17

BMP4, bFGF, Activin A, VEGF, IL-6, IGF-1, IL-11, SCF, EPO, TPO, Flt3-L, IL-7, IL-15

OP9-DL4

18

BMP4, bFGF, Activin A, VEGF, IGF-1, IL-6, IL-11, SCF, IL-3,  EPO, TPO, IL-3, Flt3-L, IL-7

OP9-DL4

15

BMP4, bFGF, VEGF, TPO, SCF, IL-6, IL-3, IL-7, Flt3-L

OP9-DL1, OP9-DL4

19




分化させた後血球細胞は、それぞれの細胞に特異的なマーカーに対する抗体を用いた、フローサイトメトリーによって確認・同定します。細胞マーカーは免疫細胞マーカー・ポスターをご参照ください。



参考文献

1.    Zambidis, E. T. et al. Expression of ACE (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112, 3601–3615 (2008).

2.    French, A., Yang, C.-T., Taylor, S., Watt, S. M. & Carpenter, L. Human Induced Pluripotent Stem Cell-Derived B Lymphocytes Express sIgM and Can be Generated via a Hemogenic Endothelium Intermediate. Stem Cells Dev. 0, 150225071446008 (2015).

3.    Choi, K. D., Vodyanik, M. A. & Slukvin, I. I. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43 +CD45+ progenitors. J. Clin. Invest. 119, 2818–2829 (2009).

4.    Su, Z., Frye, C., Bae, K. M., Kelley, V. & Vieweg, J. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res 14, 6207–6217 (2008).

5.    Chang, K. H. et al. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108, 1515–1523 (2006).

6.    Ma, F. et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 105, 13087–13092 (2008).

7.    Dias, J. et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 20, 1639–47 (2011).

8.    Saeki, K. et al. A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells 27, 59–67 (2009).

9.    Niwa, A. et al. A novel Serum-Free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 6, (2011).

10. Lachmann, N. et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports 4, 282–296 (2015).

11.  Pick, M., Azzola, L., Osborne, E., Stanley, E. G. & Elefanty, A. G. Generation of Megakaryocytic Progenitors from Human Embryonic Stem Cells in a Feeder- and Serum-Free Medium. PLoS One 8, (2013).

12.  Vanhee, S. et al. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica 100, 157–166 (2015).

13.  Feng, Q. et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 3, 817–831 (2014).

14.  Yokoyama, Y. et al. Derivation of functional mature neutrophils from human embryonic stem cells. Blood 113, 6584–6592 (2009).

15.  Sturgeon, C. M., Ditadi, A., Awong, G., Kennedy, M. & Keller, G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol. 32, 554–61 (2014).

16.  Ferrell, P. I., Xi, J., Ma, C., Adlakha, M. & Kaufman, D. S. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells. Stem Cells 33, 1130–1141 (2015).

17.  Timmermans, F. et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J. Immunol. 182, 6879–6888 (2009).

18.  Kennedy, M. et al. T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures. Cell Rep. 2, 1722–1735 (2012).

19.  Uenishi, G. et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports 3, 1073–1084 (2014).

登録