abcam

Product datasheet

Anti-Junctional Adhesion Molecule 1/JAM-A antibody ab125886

★★★★★ 2 Abreviews 4 References 画像数 1

製品の概要

製品名 Anti-Junctional Adhesion Molecule 1/JAM-A antibody

製品の詳細 Rabbit polyclonal to Junctional Adhesion Molecule 1/JAM-A

由来種 Rabbit

アプリケーション **適用あり**: WB

種交差性 交差種: Mouse, Rat, Human

交差が予測される動物種: Chinese hamster 🔷

免疫原 Synthetic peptide corresponding to Mouse Junctional Adhesion Molecule 1/JAM-A aa 50-150

conjugated to keyhole limpet haemocyanin.

(Peptide available as ab156888)

ポジティブ・コントロール This antibody gave a positive signal in the following tissue lysates: Mouse Brain; Rat Brain;

Mouse Cortex; Rat Cortex; Mouse Cerebellum; Mouse Spinal Cord.

特記事項
The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

製品の特性

製品の状態 Liquid

保存方法 Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or -

80°C. Avoid freeze / thaw cycle.

バッファー pH: 7.40

Preservative: 0.02% Sodium azide

Constituent: PBS

Batches of this product that have a concentration < 1mg/ml may have BSA added as a stabilising

agent. If you would like information about the formulation of a specific lot, please contact our

scientific support team who will be happy to help.

1

精製度 Immunogen affinity purified

ポリ/モノ ポリクローナル

アイソタイプ IgG

アプリケーション

The Abpromise guarantee <u>Abpromise保証は、</u>次のテスト済みアプリケーションにおけるab125886の使用に適用されます アプリケーションノートには、推奨の開始希釈率がありますが、適切な希釈率につきましてはご検討ください。

アプリケーション	Abreviews	特記事項
WB	★★★★☆ (1)	Use a concentration of 1 µg/ml. Detects a band of approximately 42 kDa (predicted molecular weight: 32 kDa).

ターゲット情報

機能 Seems to plays a role in epithelial tight junction formation. Appears early in primordial forms of

cell junctions and recruits PARD3. The association of the PARD6-PARD3 complex may prevent the interaction of PARD3 with JAM1, thereby preventing tight junction assembly (By similarity). Plays a role in regulating monocyte transmigration involved in integrity of epithelial barrier. Involved in platelet activation. In case of orthoreovirus infection, serves as receptor for the virus.

配列類似性 Belongs to the immunoglobulin superfamily.

Contains 2 lg-like V-type (immunoglobulin-like) domains.

翻訳後修飾 N-glycosylated.

細胞内局在 Cell junction > tight junction. Cell membrane. Localized at tight junctions of both epithelial and

endothelial cells.

画像

Western blot - Anti-Junctional Adhesion Molecule
1/JAM-A antibody (ab125886)

All lanes : Anti-Junctional Adhesion Molecule 1/JAM-A antibody (ab125886) at 1 µg/ml

Lane 1: Brain (Mouse) Tissue Lysate

Lane 2: Brain (Rat) Tissue Lysate

Lane 3 : Mouse Cortex Tissue Lysate

Lane 4: Rat Cortex Tissue Lysate

Lane 5 : Cerebellum Mouse Tissue Lysate

Lane 6 : Spinal Cord (Mouse) Tissue Lysate

Lysates/proteins at 10 µg per lane.

Secondary

All lanes: Goat Anti-Rabbit IgG H&L (HRP) (ab97051) at 1/10000

dilution

Developed using the ECL technique.

Performed under reducing conditions.

Predicted band size: 32 kDa **Observed band size:** 42 kDa

Additional bands at: 53 kDa, 99 kDa. We are unsure as to the

identity of these extra bands.

Exposure time: 3 minutes

Junctional Adhesion Molecule 1/JAM-A contains a number of potential glycosylation sites (SwissProt) which may explain its migration at a higher molecular weight than predicted. The predicted molecular weight of Junctional Adhesion Molecule 1/JAM-A is 32 kDa (SwissProt), however we expect to observe a banding pattern around 42 kDa. This blot was produced using a 4-12% Bistris gel under the MOPS buffer system. The gel was run at 200V for 50 minutes before being transferred onto a Nitrocellulose membrane at 30V for 70 minutes. The membrane was then blocked for an hour using 5% Bovine Serum Albumin before being incubated with ab125886 overnight at 4°C. Antibody binding was detected using an anti-rabbit antibody conjugated to HRP, and visualised using ECL development solution.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.co.jp/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				