abcam

Product datasheet

Anti-Cryptochrome I/CRY1 antibody ab104736

★★★★★ 1 Abreviews 15 References 画像数1

製品の概要

製品名 Anti-Cryptochrome I/CRY1 antibody

製品の詳細 Rabbit polyclonal to Cryptochrome I/CRY1

由来種 Rabbit

アプリケーション **適用あり:** WB 種交差性 交差種: Mouse

交差が予測される動物種: Rat, Human 🔷

免疫原 Synthetic peptide within Mouse Cryptochrome I/CRY1 aa 1-300 conjugated to keyhole limpet

> haemocyanin. The exact immunogen sequence used to generate this antibody is proprietary information. If additional detail on the immunogen is needed to determine the suitability of the

antibody for your needs, please contact our Scientific Support team to discuss your

requirements.

Database link: P97784

特記事項 The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

> Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any guestions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

製品の特性

製品の状態 Liquid

保存方法 Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C.

Avoid freeze / thaw cycle.

バッファー pH: 7.40

Preservative: 0.02% Sodium azide

Constituents: 50% Glycerol, 0.87% Sodium chloride, PBS

精製度 Immunogen affinity purified

ポリモノ ポリクローナル

アイソタイプ lgG

The Abpromise guarantee <u>Abpromise保証は、</u>次のテスト済みアプリケーションにおけるab104736の使用に適用されます アプリケーションノートには、推奨の開始希釈率がありますが、適切な希釈率につきましてはご検討ください。

アプリケーション	Abreviews	特記事項
WB	**** <u>(1)</u>	1/500 - 1/1000. Predicted molecular weight: 68 kDa.

ターゲット情報

機能

Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors. CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK NPAS2-ARNTL/BMAL1

ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. More potent transcriptional repressor in cerebellum and liver than CRY2,

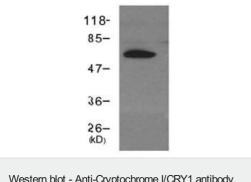
though more effective in lengthening the period of the SCN oscillator. On its side, CRY2 seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY2, is dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. Capable of translocating circadian clock core proteins such as PER proteins to the nucleus. Interacts with CLOCK-ARNTL/BMAL1 independently of PER proteins and is found at CLOCK-ARNTL/BMAL1-bound sites, suggesting that CRY may act as a molecular gatekeeper to maintain CLOCK-ARNTL/BMAL1 in a poised and repressed state until the proper time for transcriptional activation. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1, Represses the CLOCK-ARNTL/BMAL1 induced transcription of ATF4, MTA1, KLF10 and NAMPT (By similarity). May repress circadian target genes expression in collaboration with HDAC1 and HDAC2 through histone deacetylation. Mediates the clock-control activation of ATR and modulates ATR-mediated DNA damage checkpoint. In liver, mediates circadian regulation of cAMP signaling and gluconeogenesis by binding to membranecoupled G proteins and blocking glucagon-mediated increases in intracellular cAMP concentrations and CREB1 phosphorylation. Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4.

配列類似性

翻訳後修飾

細胞内局在

Belongs to the DNA photolyase class-1 family.


Contains 1 photolyase/cryptochrome alpha/beta domain.

Phosphorylation on Ser-247 by MAPK is important for the inhibition of CLOCK-ARNTL/BMAL1mediated transcriptional activity. Phosphorylation by CSNK1E requires interaction with PER1 or PER2. Phosphorylation at Ser-71 and Ser-280 by AMPK decreases protein stability. Phosphorylation at Ser-568 exhibits a robust circadian rhythm with a peak at CT8, increases protein stability, prevents SCF(FBXL3)-mediated degradation and is antagonized by interaction with PRKDC.

Ubiquitinated by the SCF(FBXL3) and SCF(FBXL21) complexes, regulating the balance between degradation and stabilization. The SCF(FBXL3) complex is mainly nuclear and mediates ubiquitination and subsequent degradation of CRY1. In contrast, cytoplasmic SCF(FBXL21) complex-mediated ubiquitination leads to stabilize CRY1 and counteract the activity of the SCF(FBXL3) complex. The SCF(FBXL3) and SCF(FBXL21) complexes probably mediate ubiquitination at different Lys residues. Ubiquitination at Lys-11 and Lys-107 are specifically ubiquitinated by the SCF(FBXL21) complex but not by the SCF(FBXL3) complex. Ubiquitination may be inhibited by PER2.

Cytoplasm. Nucleus. Translocated to the nucleus through interaction with other clock proteins such as PER2 or ARNTL/BMAL1.

画像

Western blot - Anti-Cryptochrome I/CRY1 antibody (ab104736)

Anti-Cryptochrome I/CRY1 antibody (ab104736) at 1/500 dilution + Mouse brain tissue lysate

Predicted band size: 68 kDa

For Western blotting, incubate membrane in 5% nonfat milk, 1xTBS, 0.1% Tween-20 at 4°C with gentle shaking, overnight.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- · Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.co.jp/abpromise or contact our technical team.

Terms and conditions

· Guarantee only valid for products bought direct from Abcam or one of our authorized distributors