An overview of HDAC classes and antibodies

We offer an extensive range of HDAC antibodies, covering all four deacetylase classes.

Reversible acetylation of highly conserved lysine residues within the N-terminal tail domains of core histones plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone acetylation is a dynamic process determined by the net activities of histone acetyltransferases (HATs) and the competing enzymes histone deacetylases (HDACs). Histone deacetylases activities are often, but not always, associated with transcriptional repression and nucleosomal condensations.

There are more than a dozen individual HDAC enzymes which can be divided into four main classes: I, II, III and IV. Use the links below to browse for HDAC antibodies, by class.

 Class I HDAC antibodies

Class I HDACs primarily localize to the nucleus, and share a deacetylase domain exhibiting 45% to 93% homology.

The image to the left shows HDAC1 staining of human colon tissue using ab109411.

Class II HDAC antibodies

Class II HDACs are significantly larger enzymes (double the molecular weight of class I). Members of this class are distinct from class I enzymes, having the ability to shuttle between the nucleus and cytoplasm where they can be involved in active nuclear transport.

The image to the left shows HDAC9 staining of human colon tissue using ab109446.

Class III HDAC antibodies

Class III HDACs are homologs of yeast Sir2 and can be distinguished from class I and II as they are NADH-dependent enzymes present in both the cytoplasm and nucleus.

The image to the left shows SIRT1 staining of human lung squamous carcinoma using ab32441.

Class IV HDAC antibodies

​​​​Class IV HDACs comprise only one member, HDAC11. It is a zinc-dependent deacetylase that shares conserved residues in its catalytic core with both class I and class II HDACs.

The image to the left shows HDAC11 western blot of Jurkat, HCT-116, MCF7 and HepG2 cell lysates using ab166907.