ab16895 を使用した論文を発表された方は、こちらまでお知らせください。データシートに掲載させていただきます。

ab16895 は 52 報の論文で使用されています。

  • Sanada TJ  et al. Characterization of pulmonary intimal sarcoma cells isolated from a surgical specimen: In vitro and in vivo study. PLoS One 14:e0214654 (2019). PubMed: 30925179
  • Ramos-Araque ME  et al. The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism. Transl Stroke Res 10:204-215 (2019). PubMed: 29687302
  • Caller LG  et al. Temporal Proteomic Analysis of BK Polyomavirus Infection Reveals Virus-Induced G2 Arrest and Highly Effective Evasion of Innate Immune Sensing. J Virol 93:N/A (2019). PubMed: 31142673
  • Sun B  et al. Stepwise detection and evaluation reveal miR-10b and miR-222 as a remarkable prognostic pair for glioblastoma. Oncogene 38:6142-6157 (2019). PubMed: 31289362
  • Li L  et al. GTPBP4 Promotes Gastric Cancer Progression via Regulating P53 Activity. Cell Physiol Biochem 45:667-676 (2018). PubMed: 29408813
  • Chen C  et al. Rab-like protein 1 A is upregulated by cisplatin treatment and partially inhibits chemoresistance by regulating p53 activity. Oncol Lett 16:4593-4599 (2018). PubMed: 30197676
  • Murai K  et al. Epidermal Tissue Adapts to Restrain Progenitors Carrying Clonal p53 Mutations. Cell Stem Cell 23:687-699.e8 (2018). PubMed: 30269904
  • Vecino R  et al. The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia. Sci Rep 8:1610 (2018). PubMed: 29371613
  • Zhao Y  et al. Selective anti-tumor activity of wogonin targeting the Warburg effect through stablizing p53. Pharmacol Res 135:49-59 (2018). PubMed: 30031170
  • Lin X  et al. Antitumor effects and the underlying mechanism of licochalcone A combined with 5-fluorouracil in gastric cancer cells. Oncol Lett 13:1695-1701 (2017). WB ; Human . PubMed: 28454311
  • Kucab JE  et al. Nutlin-3a selects for cells harbouring TP53 mutations. Int J Cancer 140:877-887 (2017). WB . PubMed: 27813088
  • Periyasamy M  et al. p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Res 45:11056-11069 (2017). PubMed: 28977491
  • Cubillos-Rojas M  et al. NEURL4 regulates the transcriptional activity of tumor suppressor protein p53 by modulating its oligomerization. Oncotarget 8:61824-61836 (2017). PubMed: 28977907
  • Jin F  et al. Bre Enhances Osteoblastic Differentiation by Promoting the Mdm2-Mediated Degradation of p53. Stem Cells 35:1760-1772 (2017). PubMed: 28436570
  • Hauck PM  et al. Early-Stage Metastasis Requires Mdm2 and Not p53 Gain of Function. Mol Cancer Res 15:1598-1607 (2017). PubMed: 28784612
  • Mello SS  et al. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 32:460-473.e6 (2017). PubMed: 29017057
  • Zhang Y  et al. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep 6:34578 (2016). WB ; Human . PubMed: 27698449
  • Avallone G  et al. Histological Classification and Immunohistochemical Evaluation of MDM2 and CDK4 Expression in Canine Liposarcoma. Vet Pathol 53:773-80 (2016). PubMed: 26993784
  • Jang H  et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun 7:12180 (2016). PubMed: 27412556
  • Xie N  et al. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress. Sci Rep 6:36171 (2016). WB . PubMed: 27811966
  • Kramer HB  et al. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res 44:582-94 (2016). WB ; Human . PubMed: 26400164
  • Bauer MR  et al. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Proc Natl Acad Sci U S A 113:E5271-80 (2016). PubMed: 27551077
  • Diaz-Lagares A  et al. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci U S A 113:E7535-E7544 (2016). WB ; Human . PubMed: 27821766
  • Wang HT  et al. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget 7:80450-80464 (2016). IP ; Human . PubMed: 27741518
  • Shai A  et al. TP53 Silencing Bypasses Growth Arrest of BRAFV600E-Induced Lung Tumor Cells in a Two-Switch Model of Lung Tumorigenesis. Cancer Res 75:3167-80 (2015). WB . PubMed: 26001956
  • Udeabor SE  et al. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics. Pan Afr Med J 20:140 (2015). IHC-P ; Human . PubMed: 27386018
  • Mikawa T  et al. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2. J Cell Biol 204:729-45 (2014). PubMed: 24567357
  • Lee JH  et al. Protein grafting of p53TAD onto a leucine zipper scaffold generates a potent HDM dual inhibitor. Nat Commun 5:3814 (2014). PubMed: 24804811
  • Drosten M  et al. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc Natl Acad Sci U S A 111:15155-60 (2014). PubMed: 25288756
  • Cubillos-Rojas M  et al. The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization. J Biol Chem 289:14782-95 (2014). PubMed: 24722987
  • Hirose M  et al. MDM4 expression as an indicator of TP53 reactivation by combined targeting of MDM2 and MDM4 in cancer cells without TP53 mutation. Oncoscience 1:830-43 (2014). PubMed: 25621298
  • Malek MH  et al. Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training. Exp Physiol 98:807-18 (2013). Mouse . PubMed: 23180811
  • Ross AP  et al. A mutation in mouse Pak1ip1 causes orofacial clefting while human PAK1IP1 maps to 6p24 translocation breaking points associated with orofacial clefting. PLoS One 8:e69333 (2013). IP ; Mouse . PubMed: 23935987
  • Maglic D  et al. Prognostic value of the hDMP1-ARF-Hdm2-p53 pathway in breast cancer. Oncogene 32:4120-9 (2013). WB ; Human . PubMed: 23045280
  • Zhu S  et al. Cooperation between Dmp1 Loss and Cyclin D1 Overexpression in Breast Cancer. Am J Pathol 183:1339-50 (2013). WB ; Mouse . PubMed: 23938323
  • Freiburghaus C  et al. Reduction of ultraviolet light-induced DNA damage in human colon cancer cells treated with a lactoferrin-derived peptide. J Dairy Sci 95:5552-60 (2012). WB ; Human . PubMed: 22901475
  • Bernard H  et al. The p53 isoform, ?133p53a, stimulates angiogenesis and tumour progression. Oncogene : (2012). Human . PubMed: 22733133
  • Concepcion CP  et al. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 8:e1002797 (2012). WB ; Mouse . PubMed: 22844244
  • De S  et al. RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125:2509-22 (2012). PubMed: 22357944
  • Fukawa T  et al. DDX31 regulates the p53-HDM2 pathway and rRNA gene transcription through its interaction with NPM1 in renal cell carcinomas. Cancer Res 72:5867-77 (2012). PubMed: 23019224
  • Malek R  et al. The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation. PLoS One 6:e17884 (2011). WB ; Mouse . PubMed: 21437245
  • Endo S  et al. Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells. Cancer Sci 102:605-13 (2011). WB ; Human . PubMed: 21205074
  • Villalonga-Planells R  et al. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme. PLoS One 6:e18588 (2011). WB ; Human . PubMed: 21483692
  • Sashida G  et al. The mef/elf4 transcription factor fine tunes the DNA damage response. Cancer Res 71:4857-65 (2011). WB ; Mouse . PubMed: 21616937
  • Llanos S & Serrano M Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway. Cell Cycle 9:4005-12 (2010). WB ; Human . PubMed: 20935493
  • Salem MM  et al. Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB J 23:3790-807 (2009). IHC-Fr ; Human . PubMed: 19641144
  • Sashida G  et al. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation. Mol Cell Biol 29:3687-99 (2009). PubMed: 19380490
  • Llanos S  et al. MSK2 inhibits p53 activity in the absence of stress. Sci Signal 2:ra57 (2009). WB ; Human . PubMed: 19797274
  • Tabata N  et al. Rapid antibody selection by mRNA display on a microfluidic chip. Nucleic Acids Res 37:e64 (2009). PubMed: 19336414
  • Maimets T  et al. Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene 27:5277-87 (2008). WB ; Human . PubMed: 18521083
  • Efeyan A  et al. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 67:7350-7 (2007). PubMed: 17671205
  • Reagan-Shaw S  et al. Enhancement of UVB radiation-mediated apoptosis by sanguinarine in HaCaT human immortalized keratinocytes. Mol Cancer Ther 5:418-29 (2006). PubMed: 16505117

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"
For licensing inquiries, please contact partnerships@abcam.com

登録