Anti-SMARCA2 / BRM 抗体 - ChIP Grade (ab15597)

ab15597 を使用した論文を発表された方は、こちらまでお知らせください。データシートに掲載させていただきます。

ab15597 は 42 報の論文で使用されています。

  • Kobayashi K  et al. Tumor suppression via inhibition of SWI/SNF complex-dependent NF-?B activation. Sci Rep 7:11772 (2017). PubMed: 28924147
  • Bártová E  et al. The level and distribution pattern of HP1ß in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochem Cell Biol 145:447-61 (2016). PubMed: 26794325
  • Ye Z  et al. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1. Nucleic Acids Res 44:7540-54 (2016). CHIPseq ; Human . PubMed: 27458208
  • Gurard-Levin ZA  et al. Chromatin Regulators as a Guide for Cancer Treatment Choice. Mol Cancer Ther 15:1768-77 (2016). PubMed: 27196757
  • Wu Q  et al. The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation. Oncotarget 7:38270-38281 (2016). PubMed: 27223259
  • Kobayashi K  et al. The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep 5:8428 (2015). WB . PubMed: 25673149
  • Fedorov O  et al. Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Sci Adv 1:e1500723 (2015). WB . PubMed: 26702435
  • Takeshima H  et al. Frequent involvement of chromatin remodeler alterations in gastric field cancerization. Cancer Lett 357:328-38 (2015). PubMed: 25462860
  • Ceballos-Chávez M  et al. The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers. PLoS Genet 11:e1005174 (2015). WB ; Human . PubMed: 25894978
  • Smith-Roe SL  et al. SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 6:732-45 (2015). WB ; Human . PubMed: 25544751
  • Vangamudi B  et al. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies. Cancer Res 75:3865-78 (2015). PubMed: 26139243
  • Albini S  et al. Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Rep 16:1037-50 (2015). PubMed: 26136374
  • Witkowski L  et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 46:438-43 (2014). Human . PubMed: 24658002
  • Maxwell SS  et al. Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol 10:1741-57 (2013). PubMed: 24270455
  • Imbalzano KM  et al. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections. PLoS One 8:e55628 (2013). WB . PubMed: 23405182
  • Ondrušová L  et al. MITF-independent pro-survival role of BRG1-containing SWI/SNF complex in melanoma cells. PLoS One 8:e54110 (2013). ICC ; Human . PubMed: 23349796
  • Nott A  et al. S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proc Natl Acad Sci U S A 110:3113-8 (2013). IHC-FoFr ; Mouse . PubMed: 23359715
  • Saladi SV  et al. BRG1 promotes survival of UV-irradiated melanoma cells by cooperating with MITF to activate the melanoma inhibitor of apoptosis gene. Pigment Cell Melanoma Res 26:377-91 (2013). WB . PubMed: 23480510
  • Damiano L  et al. Oncogenic targeting of BRM drives malignancy through C/EBPß-dependent induction of a5 integrin. Oncogene N/A:N/A (2013). PubMed: 23770848
  • Jordan NV  et al. SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol 33:3011-25 (2013). PubMed: 23716599
  • Chandler RL  et al. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol 33:265-80 (2013). IP ; Mouse . PubMed: 23129809
  • You JS  et al. SNF5 is an essential executor of epigenetic regulation during differentiation. PLoS Genet 9:e1003459 (2013). WB . PubMed: 23637628
  • Van Houdt JK  et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet 44:445-9 (2012). PubMed: 22366787
  • Middeljans E  et al. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One 7:e33834 (2012). IP . PubMed: 22442726
  • Kim Y  et al. An essential role for a mammalian SWI/SNF chromatin-remodeling complex during male meiosis. Development 139:1133-40 (2012). IF . PubMed: 22318225
  • Ishizaka A  et al. Double plant homeodomain (PHD) finger proteins DPF3a and -3b are required as transcriptional co-activators in SWI/SNF complex-dependent activation of NF-?B RelA/p50 heterodimer. J Biol Chem 287:11924-33 (2012). PubMed: 22334708
  • Euskirchen GM  et al. Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches. PLoS Genet 7:e1002008 (2011). IP ; Human . PubMed: 21408204
  • Engel KB & Yamamoto KR The Glucocorticoid Receptor and the Coregulator Brm Selectively Modulate Each Other's Occupancy and Activity in a Gene-Specific Manner. Mol Cell Biol 31:3267-76 (2011). PubMed: 21646426
  • Fish JE  et al. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 285:810-26 (2010). WB ; Human . PubMed: 19880524
  • Vicent GP  et al. Nuclear factor 1 synergizes with progesterone receptor on the mouse mammary tumor virus promoter wrapped around a histone H3/H4 tetramer by facilitating access to the central hormone-responsive elements. J Biol Chem 285:2622-31 (2010). ChIP ; Human . PubMed: 19940123
  • Cohet N  et al. SWI/SNF chromatin remodeling enzyme ATPases promote cell proliferation in normal mammary epithelial cells. J Cell Physiol 223:667-78 (2010). WB ; Human . PubMed: 20333683
  • Hwang CK  et al. Up-regulation of the mu-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells. Mol Pharmacol 78:58-68 (2010). ChIP ; Mouse . PubMed: 20385708
  • Bandhakavi S  et al. Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response. Mol Cell Proteomics 9:403-14 (2010). PubMed: 19955088
  • Hwang CK  et al. Epigenetic programming of mu-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med 13:3591-615 (2009). PubMed: 19602036
  • Vicent GP  et al. Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet 5:e1000567 (2009). ChIP . PubMed: 19609353
  • Lavigne M  et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 5:e1000769 (2009). WB, ChIP ; Human . PubMed: 20011120
  • Sebastian S  et al. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci U S A 106:4719-24 (2009). ICC/IF ; Mouse . PubMed: 19264965
  • Degenhardt T  et al. Population-level transcription cycles derive from stochastic timing of single-cell transcription. Cell 138:489-501 (2009). ChIP ; Human . PubMed: 19665971
  • Kaeser MD  et al. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 283:32254-63 (2008). PubMed: 18809673
  • Ito T  et al. Brm transactivates the telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns of its transcripts in concert with p54(nrb). Biochem J 411:201-9 (2008). WB ; Human . PubMed: 18042045
  • Klokk TI  et al. Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 27:1823-43 (2007). PubMed: 17189428
  • Gunawardena RW  et al. SWI/SNF activity is required for the repression of deoxyribonucleotide triphosphate metabolic enzymes via the recruitment of mSin3B. J Biol Chem 282:20116-23 (2007). ChIP ; Human . PubMed: 17510060