abcam

Product datasheet

Biotin Anti-Phosphothreonine antibody ab9340

1 References 画像数 2

製品の概要

製品名 Biotin Anti-Phosphothreonine antibody

製品の詳細 Biotin Rabbit polyclonal to Phosphothreonine

中来種 Rabbit 標識 Biotin

特異性 Reacts with free phosphothreonine but does not react with phosphoserine, threonine or

phosphotyrosine.

アプリケーション 適用あり: WB, IP, ELISA

種交差性 交差種: Species independent

免疫原 Chemical/ Small Molecule corresponding to Phosphothreonine conjugated to keyhole limpet

haemocyanin.

ポジティブ・コントロール Use mouse brain extract for immunoblotting. Use synthetic phosphopeptide (on threonine) for

ELISA.

特記事項The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

製品の特性

製品の状態 Liquid

保存方法 Shipped at 4°C. Store at +4°C short term (1-2 weeks). Store at -20°C or -80°C. Avoid freeze /

thaw cycle.

バッファー pH: 6

Preservative: 0.02% Sodium azide

精製度 Immunogen affinity purified

特記事項(精製) Immunoaffinity chromatography with phosphothreonine-agarose.

ポリ/モノ ポリクローナル

1

アプリケーション

The Abpromise guarantee <u>Abpromise保証は、</u>次のテスト済みアプリケーションにおけるab9340の使用に適用されますアプリケーションノートには、推奨の開始希釈率がありますが、適切な希釈率につきましてはご検討ください。

アプリケーション	Abreviews	特記事項
WB		
IP		
ELISA		

追加情報

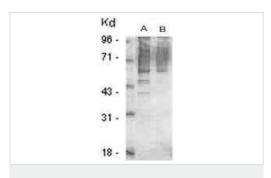
ELISA(kinase assay): Use at 0.5 μg/mL

Western blot: Use at 4µg/mL

IP: Use at 10 μg/250 μg protein sample

Will detect 100 ng of phosvitin in Western Blots and 0.5 ng of phosvitin with ELISA. Can be used for non-radioactive protein kinase assay (ELISA) using biotinylated peptide substrate and immunoblotting of abundant phosphoproteins.

It is not recommended for immunoblotting of trace cellular phosphoproteins. Acetone precipitation of the protein extract followed by SDS denaturation is recommended for successful immunoprecipitation.

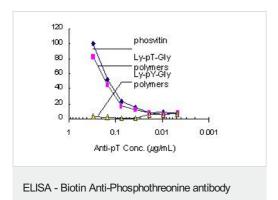

ターゲット情報

関連性

Phosphorylation of threonine residues is associated with many growth factors and oncogene protein kinases, and is important for cell signaling in activation, proliferation and differentiation. Protein phosphorylation and dephosphorylation are basic mechanisms for the modification of protein function in eukaryotic cells. Phosphorylation is a rare post-translational event in normal tissue, however, the abundance of phosphorylated cellular proteins increases several fold following various activation processes which are mediated through phosphotyrosine, phosphoserine or phosphothreonine (p-tyr/p-ser/p-thr). Many signal transduction pathways, such as the EGF, PDGF and insulin receptor systems, contain tyr/ser/thr kinase which phosphorylate specific tyr/ser/thr residues upon binding of ligands to their receptors. T cell antigen receptor complex or the receptors for some hemopoietic growth factors may stimulate these phosphorylation associated kinases, and cells transformed by viral oncogenes contain elevated levels of phosphorylated tyr/ser/thr. An understanding of transformation by oncogenes and mitogenic processes of growth factors depends on the identification of their substrate and a subsequent determination of how phosphorylation affects their properties. Studies on the role of phosphorylated proteins have been hampered by their low abundance and the problem of distinguishing the various types of phosphorylated proteins. The most common procedure is to label intact cells or small tissue fragments with 32P and subsequently to isolate 32P labeled proteins by conventional biochemical methods. In order to identify the specific amino acids that undergo phosphorylation, additional long and tedious procedures for phosphoamino acid analysis are required. Immunoblotting of cellular proteins with antibodies directed against phosphoamino acids is advantageous as it does not involve 32P labeling, and can therefore be employed to monitor alterations in phosphorylation of specific proteins as they occur in intact organs or the whole animal. Indeed, mono and polyclonal antibodies directed against phosphorylated residues

have been generated and found useful as analytical and preparative tools because they enable the rapid identification, quantification and immunoaffinity isolation of phosphorylated cellular proteins.

画像


Immunoblotting of fetal mouse brain extract (125 ug - A and 25 ug -

B)

Immunoblotting of fetal mouse brain extract (125 ug - A and 25 ug -

B)

Antibody Capture ELISA

Label: immobilized antigen

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.co.jp/abpromise or contact our technical team.

Terms and conditions

(ab9340)

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				